Liberty Street Economics

« | Main | »

November 5, 2014

Forecasting Inflation with Fundamentals . . . It’s Hard!


Controlling inflation is at the core of monetary policymaking, and central bankers would like to have access to reliable inflation forecasts to assess their progress in achieving this goal. Producing accurate inflation forecasts, however, turns out not to be a trivial exercise. This posts reviews the key challenges in inflation forecasting and discusses some recent developments that attempt to deal with these challenges.


The behavior of U.S. inflation measures has changed substantially over time. The chart below plots the inflation rates measured by the deflators for personal consumption expenditure with and without food and energy expenditures—or PCE and core PCE, respectively. Inflation rates have varied over the past five or so decades, averaging about 3 percent in the 1960s, 8 percent in the 1970s, 4 percent in the 1980s, and 2 percent since the 1990s. Essentially, the long-run trend in inflation increased during the 1970s, reaching peaks around 1974-1975 and 1980; decreased after 1982-1983; and stabilized at about 2 percent in the early 1990s, where it has remained. (See Cogley and Sargent [2005] and Cogley, Primiceri, and Sargent [2010] for reviews of past inflation behavior.)


PCE and Core PCE Inflation Rates

A time-varying underlying inflation rate complicates inflation forecasting tremendously. To illustrate this, suppose a forecaster attempts to forecast inflation with a model that relies on lags of inflation—that is, past inflation—under the assumption that long-run inflation remains unchanged (an autoregressive model ). The resulting forecasts for future inflation rates will be anchored by the assumed unchanged long-run inflation rate. Now, if in reality the long-run rate changes, then the inflation forecasts from the autoregressive model will be biased because the model assumes that there is a tendency for inflation to converge back to the “old” long-run inflation rate. Indeed, in this case one would do better by using the current inflation rate as a predictor for future inflation (a random walk model) because this would not build this false anchoring into the forecast. Stock and Watson (2007) show that inflation is well described by an agnostic model in which a slowly evolving trend is extracted from inflation itself and shocks to this estimated inflation trend are allowed to be larger or smaller from period to period. When the most recent estimate of this inflation trend is used as a predictor for all future inflation rates, it outperforms a range of alternative models, suggesting that adding some form of structural change to predictive models helps improve inflation forecasting.

Another issue is how to find the right variables to predict future inflation. Economists often use the Phillips curve relationship, with inflation depending inversely on unemployment—that is, lower unemployment puts upward pressure on wages and, eventually, on inflation. But while an unemployment rate variable is common, it isn’t clear that this is the best gauge. Stock and Watson (1999) and Wright (2009) consider a broader range of possible “economic slack” variables and then use different ways to condense the information in these variables to predict future inflation. Generally, these approaches do as well as or better than autoregressive models. Atkeson and Ohanian (2001), however, conduct a similar exercise but focus on the post-1985 period, which—up to the advent of the Great Recession—was a period typified by remarkably low and stable inflation in the United States. Using the Chicago Fed National Activity Index (CFNAI), which summarizes information across many activity variables, they show that the resulting inflation forecasts are worse than when one just relies on current inflation to forecast future inflation.

Given the effects of changes in inflation behavior on the accuracy of statistical inflation forecasting models, as well as uncertainty about their most optimal specification, it is usually difficult for models to beat judgmental central bank inflation projections. These projections usually follow a bottom-up approach that compiles information across different teams and data sources in a central bank and then modifies the forecast with judgmental views that can adapt when a change in inflation behavior is suspected. Faust and Wright (2009), for the Federal Reserve Board, and Groen, Kapetanios, and Price (2009), for the Bank of England, found that incorporating judgment about the long-run inflation level is what makes these official projections relatively successful in inflation forecasting.

Still, having a non-judgmental benchmark for inflation forecasting that can deal with both inflation instability and uncertainty regarding the predictor choice would be useful. The article “Real-Time Inflation Forecasting in a Changing World,” which I co-authored with Richard Paap and Francesco Ravazzolo, assesses inflation forecasting based on averaging forecasting specifications using a set of fifteen potential predictors, including lagged values of inflation, a host of real activity data such as unemployment and housing starts, term structure data, commodity prices, and inflation expectations from the Michigan survey. The model average, where each individual specification’s weight is driven by its relative importance for inflation, allows for different channels of instability, either in the coefficients of each individual specification within this average or in the error variance of the overall model average, or both.

Our framework models the PCE and GDP deflators for the 1960-2011 period and compares the forecasting performance with that of the previously discussed Stock and Watson (2007) inflation trend model. For the post-1984 period, encompassing both the Great Moderation and the Great Recession episodes, our analysis shows that averaging over a large number of predictors as well as allowing for instability produces inflation forecasts that are, on average, about 10 to 15 percent more accurate than the inflation trend model. These forecasts also have larger gains in accuracy compared with those methods that use only current inflation or inflation lags, those that use many potential predictor variables but don’t allow for instability, and traditional unemployment-based forecasts.

The approach of combining many inflation prediction specifications while allowing for inflation instability is most useful in predicting slowdowns in inflation over the twelve months following the estimate. Within this time frame, the model has an average 20 to 30 percent improvement in forecast precision over inflation trend predictions. Future inflation accelerations, however, aren’t well tracked by our model. This is consistent with the 2010 Jackson Hole paper by Mark Watson and James Stock, which suggests that slack variables, such as the unemployment rate, can only predict inflation when they are worsening relative to the preceding business cycle peak. Thus, only during economic slowdowns do activity measures seem to have predictive information for inflation.

Disclaimer

The views expressed in this post are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors.


Groen_jan
Jan Groen is an officer in the Federal Reserve Bank of New York’s Research and Statistics Group.

Comments

Feed You can follow this conversation by subscribing to the comment feed for this post.

Attempting to attach “statistical significance” to a non-stationary process using models based on “stationary stochastic assumptions,” is clearly not valid. The author’s alternative seems to be to use “…judgement about the long-run inflation level” (clearly non-statistical), which casts the estimation of “long-run inflation level” into some doubt and readily allows a “political” impact on such a very important metric. This attempt to apply modeling based on the assumptions of stationary stochastic parameter-estimation is clearly wrong, when the under-lying processes are intrinsically non-stationary (a common problem with many current estimates). Also, the use of “judgement” is clearly non-statistical and subject to all kinds of bias (such as creating a “politically-derived” metric).

Thanks for an interesting overview. Regarding your last point, and reintroducing a bit of human judgment, could it be that the post-1984 period has generally been one of very weak labor bargaining power? Thus when unemployment goes up, employers can easily compress salaries, while when it goes down, people are only happy to find work again. The fact that the only significant period of strong employment, in the 90s, has been accompanied by declining inflation certainly does not help the predictive value of labor market slack.

I think behavior inflation has changed substantially over time and it complicates inflation forecasting. How to find the right variables to predict future inflation?

Actually forecasting inflation is rather easy: when income gains (wages, salaries, etc.) begin to outpace increases in real economic output inflation will follow.

The comments to this entry are closed.

About the Blog

Liberty Street Economics features insight and analysis from New York Fed economists working at the intersection of research and policy. Launched in 2011, the blog takes its name from the Bank’s headquarters at 33 Liberty Street in Manhattan’s Financial District.

The editors are Michael Fleming, Andrew Haughwout, Thomas Klitgaard, and Asani Sarkar, all economists in the Bank’s Research Group.

Liberty Street Economics does not publish new posts during the blackout periods surrounding Federal Open Market Committee meetings.

The views expressed are those of the authors, and do not necessarily reflect the position of the New York Fed or the Federal Reserve System.

Economic Research Tracker

Image of NYFED Economic Research Tracker Icon Liberty Street Economics is available on the iPhone® and iPad® and can be customized by economic research topic or economist.

Economic Inequality

image of inequality icons for the Economic Inequality: A Research Series

This ongoing Liberty Street Economics series analyzes disparities in economic and policy outcomes by race, gender, age, region, income, and other factors.

Most Read this Year

Comment Guidelines

 

We encourage your comments and queries on our posts and will publish them (below the post) subject to the following guidelines:

Please be brief: Comments are limited to 1,500 characters.

Please be aware: Comments submitted shortly before or during the FOMC blackout may not be published until after the blackout.

Please be relevant: Comments are moderated and will not appear until they have been reviewed to ensure that they are substantive and clearly related to the topic of the post.

Please be respectful: We reserve the right not to post any comment, and will not post comments that are abusive, harassing, obscene, or commercial in nature. No notice will be given regarding whether a submission will or will
not be posted.‎

Comments with links: Please do not include any links in your comment, even if you feel the links will contribute to the discussion. Comments with links will not be posted.

Send Us Feedback

Disclosure Policy

The LSE editors ask authors submitting a post to the blog to confirm that they have no conflicts of interest as defined by the American Economic Association in its Disclosure Policy. If an author has sources of financial support or other interests that could be perceived as influencing the research presented in the post, we disclose that fact in a statement prepared by the author and appended to the author information at the end of the post. If the author has no such interests to disclose, no statement is provided. Note, however, that we do indicate in all cases if a data vendor or other party has a right to review a post.

Archives