Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-19 -Liberty Street Economics
Liberty Street Economics

« Did Dealers Fail to Make Markets during the Pandemic? | Main | Who Pays What First? Debt Prioritization during the COVID Pandemic »

March 25, 2021

Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-19



Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-190

Seasonal adjustment is a key statistical procedure underlying the creation of many economic series. Large economic shocks, such as the 2007-09 downturn, can generate lasting seasonal echoes in subsequent data. In this Liberty Street Economics post, we discuss the prospects for these echo effects after last year’s sharp economic contraction by focusing on the payroll employment series published by the U.S. Bureau of Labor Statistics (BLS). We note that seasonal echoes may lead the official numbers to overstate actual changes in payroll employment modestly between March and July of this year after which distortions flip the other way.

Seasonal Echoes after the Great Recession
Many economic series present periodic patterns within each calendar year, generally referred to as seasonal effects. Statistical agencies apply statistical filters to remove these seasonal effects so that the underlying economic trends can be easily compared over time. Most analysts focus on seasonally adjusted data, without paying much attention to the unadjusted series or the adjustment process itself. It is easy then to miss just how large seasonal swings in the unadjusted economic data can be (for GDP, they are on average as big as a typical business cycle peak-to-trough fluctuation) and that the seasonal statistical filter itself can create spurious variation in the adjusted series.

A pernicious problem with seasonal adjustment comes after a big shock that is not seasonal in its origin. Since the seasonal filter determines the normal pattern for, say, January, by a weighted average of the last few Januaries, an unusual observation will have a big impact on estimated seasonal factors. For example, the worst of the 2007-09 Great Recession was in early 2009. Seasonal filters concluded that the normal employment for this time of year was lower. As a result, for the subsequent few years, an “echo” of the Great Recession took place as economic data kept exceeding the artificially low expectations for that time of year. This contributed to a pattern where economic growth seemed to be strong in the spring only to fade later on in the year, as shown by Wright (2013). The problem could be mitigated by the user making manual adjustments. In fact, the Federal Reserve Board made such an adjustment in the 2010 annual revision in the official industrial production statistics.

Seasonal Echoes after COVID-19: Payroll Employment
Last year’s recession was an order of magnitude bigger than the Great Recession. If the seasonal filter were left to run without any special adjustment, the estimated seasonal factors would be completely dominated by the within-year patterns in 2020. Agencies doing seasonal adjustment were well aware of the problem and applied manual adjustments. Agencies dislike making these ad hoc adjustments because they want the data process to be transparent. The COVID-19 recession was so extreme that such interventions were necessary as discussed by the BLS commissioner.

Do these adjustments mean that we will not see seasonal echoes of COVID-19 in the economic series in the future? We take as a case study, total nonfarm payrolls in the Current Employment Statistics (CES), produced by the BLS. This measure is perhaps the most widely watched monthly economic indicator. The BLS also posts extensive documentation of its seasonal adjustment procedure.

Seasonal adjustment in the CES is done at the disaggregate sectoral level. The BLS made manual adjustments first by switching many series from having “multiplicative” to “additive” factors, but also by hardcoding that a particular month for a particular disaggregate was to be treated as an “additive outlier.” Within the X-13 statistical filter, which is used by U.S. agencies for seasonal adjustment, this means that the series will be ignored for the purposes of computing the seasonal factor. X-13 also has some automatic outlier detection, which could mitigate the problem of extreme observations. But this depends on whether the automated procedure detects the outlier. Manually designating the observation as an outlier forces X-13 to exclude the presumed outlier. The chart below shows the ratio of the level of total employment in the CES in sectors that are manually treated as additive outliers to the level of total employment in all sectors, for each month since the start of 2020.


Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-19


In April 2020, about 90 percent of employment was in sectors that the BLS manually treated as outliers. Since then, the BLS has very slowly reduced the overall fraction of employment that is treated as additive outliers. But even as of February 2021, most employment is in sectors that are receiving this special treatment. Naturally, the sectors that BLS is labelling as outliers are the ones most heavily influenced by the effects of COVID-19, such as airline transportation, for which every month since April 2020 has been hardcoded as an additive outlier.

If the seasonal filter were run without manual adjustment, the seasonal factors for late spring and summer would have plunged in 2020, setting up a huge seasonal echo effect. The manual adjustments greatly reduced—but did not eliminate—this echo effect. The only way of preventing the timing of COVID-19 from disrupting seasonals would be to treat every single component as an additive outlier from March 2020 onward, at least until the effects of COVID-19 are in the rearview mirror. This approach would essentially amount to projecting seasonal factors for March 2020 onward only using earlier data.

To show the possible echo effect we run an exercise of taking the BLS model specification files for seasonal adjustment in the CES and then doing the seasonal adjustment treating every single sectoral employment series as an additive outlier from March 2020 onward, while keeping everything else unchanged. For example, for series where the BLS uses a multiplicative seasonal factor, we used a multiplicative factor. We then computed seasonally adjusted total nonfarm payrolls by month and compared these with the official seasonally adjusted total nonfarm payrolls.


Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-19


The chart shows the level of official seasonally adjusted payrolls less our alternative. A positive number means that the distortion is driving the seasonal factor down and making the data look better than it really is. We see that the distortions are positive in the spring and summer and negative in the fall and winter. The effects are meaningful, but won’t completely distort the data. For some months, the distortion to the level is over 100,000 payrolls and we can expect these distorted seasonals to carry over into 2021.

Most attention is given to monthly changes in payrolls, rather than the level. Our results would say that in March and April, payroll changes will be overstated by roughly 90,000 jobs per month and that there will continue to be an overstatement in payroll changes until late summer, when the distortion flips the other way. Although this echo effect is important, it is small relative to the effects of COVID-19 and the monthly job growth that would be required to get the economy back to full employment.

There are no easy answers to seasonal adjustment in this environment. The virus changed the economy and seasonal patterns, in some cases temporarily and perhaps permanently in other cases. As in our exercise, it might be desirable to treat every observation as an outlier until the economy is back to normal, or a “new normal,” and then use a “level shift” dummy to restart the estimation of seasonal factors at a new level of the economic variable. This approach would have the advantage of avoiding the echo effect, but the disadvantage that it would take longer for new seasonal patterns to be controlled for.

Seasonal Echoes after COVID-19 beyond Payroll Employment
Our numerical exercise suggests that, yes, we will see some echo effect in payroll numbers, but that this effect was greatly reduced by the interventions made by BLS. What about other series? For data released by the Bureau of Economic Analysis (BEA) in the National Income and Product Account data, such as GDP, the seasonal adjustment is done by different agencies that provide the underlying data to the BEA. Unfortunately, the process is not publicly documented and cannot be reproduced. In fact, until a few years ago, the BEA did not publish nonseasonally adjusted data. While we expect that some manual adjustments were made either by the BEA or other agencies that contribute data to the BEA, it is very hard to tell how big the seasonal echoes in important statistics, such as GDP, may be. Only time will tell.


David LuccaDavid Lucca is a vice president in the Federal Reserve Bank of New York’s Research and Statistics Group.


Jonathan Wright is a professor of economics at Johns Hopkins University.


How to cite this post:
David Lucca and Jonathan Wright, “Reasonable Seasonals? Seasonal Echoes in Economic Data after COVID-19,” Federal Reserve Bank of New York Liberty Street Economics, March 25, 2021, https://libertystreeteconomics.newyorkfed.org/2021/03/reasonable-seasonals-seasonal-echoes-in-economic-data-after-covid-19.html.



Disclaimer
The views expressed in this post are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors.
Posted by Blog Author at 07:00:00 AM in Economic History, Employment, Pandemic
Comments

Feed You can follow this conversation by subscribing to the comment feed for this post.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been saved. Comments are moderated and will not appear until approved by the author. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

About the Blog
Liberty Street Economics features insight and analysis from New York Fed economists working at the intersection of research and policy. Launched in 2011, the blog takes its name from the Bank’s headquarters at 33 Liberty Street in Manhattan’s Financial District.

The editors are Michael Fleming, Andrew Haughwout, Thomas Klitgaard, and Asani Sarkar, all economists in the Bank’s Research Group.

Liberty Street Economics does not publish new posts during the blackout periods surrounding Federal Open Market Committee meetings.

The views expressed are those of the authors, and do not necessarily reflect the position of the New York Fed or the Federal Reserve System.


Economic Research Tracker

Liberty Street Economics is now available on the iPhone® and iPad® and can be customized by economic research topic or economist.


Most Viewed

Last 12 Months
Useful Links
Comment Guidelines
We encourage your comments and queries on our posts and will publish them (below the post) subject to the following guidelines:
Please be brief: Comments are limited to 1500 characters.
Please be quick: Comments submitted after COB on Friday will not be published until Monday morning.
Please be aware: Comments submitted shortly before or during the FOMC blackout may not be published until after the blackout.
Please be on-topic and patient: Comments are moderated and will not appear until they have been reviewed to ensure that they are substantive and clearly related to the topic of the post. We reserve the right not to post any comment, and will not post comments that are abusive, harassing, obscene, or commercial in nature. No notice will be given regarding whether a submission will or will not be posted.‎
Disclosure Policy
The LSE editors ask authors submitting a post to the blog to confirm that they have no conflicts of interest as defined by the American Economic Association in its Disclosure Policy. If an author has sources of financial support or other interests that could be perceived as influencing the research presented in the post, we disclose that fact in a statement prepared by the author and appended to the author information at the end of the post. If the author has no such interests to disclose, no statement is provided. Note, however, that we do indicate in all cases if a data vendor or other party has a right to review a post.
Archives