Liberty Street Economics

« | Main | »

November 2, 2015

Understanding Earnings Dispersion

LSE_2015_earnings-dispersion-karahan_460_art

How much someone earns is an important determinant of many significant decisions over the course of a lifetime. Therefore, understanding how and why earnings are dispersed across individuals is central to understanding dispersion in a wide range of areas such as durable and non-durable consumption expenditures, debt, hours worked, and even health. Drawing on a recent New York Fed staff report “What Do Data on Millions of U.S. Workers Reveal about Life-Cycle Earnings Risks?”, this blog post investigates the nature of earnings inequality over a lifetime.  It finds that earnings are subject to significant downside risk and that such risk contributes substantially to overall earnings dispersion.


Salary and wage data from 33 years of W-2 forms (more than 200 million observations) show how much earnings inequality among men increases with age. (Here I focus on the earnings dynamics of men. My colleagues and I are currently undertaking a similar study that focuses on the earnings dynamics of women.) The chart below plots the variance of how much men earn from age twenty-five to sixty. While earnings are quite dispersed among twenty-five-year-olds, dispersion increases dramatically over the next thirty-five years.

LSE_2015_earnings-dispersion-karahan_chart1_art

What accounts for this fanning out? One potential explanation is that earnings trends differ across individuals, which leads to greater divergence as a cohort ages. Another possibility is that certain events over the course of an individual’s career—some of which are largely unforeseeable, such as job losses and health shocks, and others more driven by circumstances, such as landing a dream job, or getting a promotion and salary raise—accumulate and cause earnings to diverge.

The first explanation may be interpreted as stemming from differences in permanent abilities and has to do with human capital investments before labor market entry. If this is the more important component affecting the dispersion of earnings quantitatively, this would call for policies related to human capital accumulation. The second explanation relates more to labor market risk, and may call for specific social policies that provide insurance against these types of risks.

To investigate which factor is more important, I take a close look at how earnings growth over a career differs across people. In the chart below, men are grouped into percentiles of total lifetime income (income earned between ages twenty-five and sixty). The chart shows that the median worker in the income distribution experiences about a 38 percent rise in his real earnings between ages twenty-five and sixty. There is an impressive amount of heterogeneity: Workers below the 20th percentile actually experience a decline in earnings, while those in the top 1 percent experience a fifteenfold increase.

LSE_2015_earnings-dispersion-karahan_chart2_art

But what happens to earnings from one year to the next? The table below shows the segment  of workers who experience a percent change in earnings that is less than some value x. Annual earnings changes are quite concentrated and small for most; about 50 percent of people experience a change in their earnings of less than 10 percentage points. But earnings changes can be quite dramatic for a small fraction: about 6 percent of the men in our sample have a change in labor earnings that is larger than 100 percentage points. Such huge changes can potentially explain why people end up with very different earnings profiles during their career.

LSE_2015_earnings-dispersion-karahan_table_art

Is there systematic variation in the volatility of earnings across workers? The following interactive chart shows the standard deviation of changes in earnings against age and earnings over the past five years (recent earnings).  Several striking features emerge. At all ages, earnings are most volatile at the bottom of the distribution and this volatility declines with earnings to a point. One explanation is that unemployment risk declines as earnings increase. Interestingly, volatility starts to rise toward the upper end of the earnings distribution and it ends up higher for top income earners than it is for median earners.

There is also important life-cycle variation in how much earnings fluctuate on an annual basis. Volatility of earnings tends to decrease between the ages of twenty-five and forty-five and to increase thereafter. This result is consistent with the view that younger workers change jobs frequently as they try to figure out the best fit for them. They also experience more unemployment spells, which contribute to earnings variability. An exception to the life-cycle variation described above is the top income earners. Their variability tends to be lower when young and increase with age.


LSE_2015_earnings-dispersion-karahan_chart3-button-interactive_art

How persistent are earnings changes? If they are quite persistent, then they might accumulate over the course of a career and contribute to a wider dispersion of earnings. This possibility is explored in the interactive chart below, which shows changes in earnings for men at different income levels. More specifically, the chart below shows the change in income over a ten-year period following a group of individuals who experience an income change of a given magnitude. To illustrate differences in dynamics across the income distribution, these are shown for six income groups. If earnings changes were completely permanent, one would not expect a further change in earnings and the data would line up on the dashed horizontal  line. If, on the other extreme, earnings changes are completely transitory, then one would expect these individuals to experience an opposing change in income, either positive or negative, of the same magnitude and reach a similar income level. In this case, the data would line up on the negative 45-degree line.


LSE_2015_earnings-dispersion-karahan_chart4-button_art

Data show that negative shocks to those in the lowest income group (solid blue line) are quite transitory, with a mean reversion of about 80 percent, whereas positive shocks are quite persistent, with only about a 20 percent reversion to the mean after 10 years. As we move up the earnings distribution, the positive and negative branches of the line for each income group rotate in opposite directions, so that for those in the highest earnings group, we have the opposite pattern: negative changes to income tend to be almost permanent, while positive changes tend to be quite transitory.

Overall, these findings show that earnings are quite volatile, and that the nature of earnings risk varies for different groups of male workers, contributing to the level of earnings dispersion.

Disclaimer

The views expressed in this post are those of the author and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the author.


Karahan_fatih
Fatih Karahan is an economist in the Federal Reserve Bank of New York’s Research and Statistics Group.

About the Blog

Liberty Street Economics features insight and analysis from New York Fed economists working at the intersection of research and policy. Launched in 2011, the blog takes its name from the Bank’s headquarters at 33 Liberty Street in Manhattan’s Financial District.

The editors are Michael Fleming, Andrew Haughwout, Thomas Klitgaard, and Asani Sarkar, all economists in the Bank’s Research Group.

Liberty Street Economics does not publish new posts during the blackout periods surrounding Federal Open Market Committee meetings.

The views expressed are those of the authors, and do not necessarily reflect the position of the New York Fed or the Federal Reserve System.

Economic Research Tracker

Image of NYFED Economic Research Tracker Icon Liberty Street Economics is available on the iPhone® and iPad® and can be customized by economic research topic or economist.

Economic Inequality

image of inequality icons for the Economic Inequality: A Research Series

This ongoing Liberty Street Economics series analyzes disparities in economic and policy outcomes by race, gender, age, region, income, and other factors.

Most Read this Year

Comment Guidelines

 

We encourage your comments and queries on our posts and will publish them (below the post) subject to the following guidelines:

Please be brief: Comments are limited to 1,500 characters.

Please be aware: Comments submitted shortly before or during the FOMC blackout may not be published until after the blackout.

Please be relevant: Comments are moderated and will not appear until they have been reviewed to ensure that they are substantive and clearly related to the topic of the post.

Please be respectful: We reserve the right not to post any comment, and will not post comments that are abusive, harassing, obscene, or commercial in nature. No notice will be given regarding whether a submission will or will
not be posted.‎

Comments with links: Please do not include any links in your comment, even if you feel the links will contribute to the discussion. Comments with links will not be posted.

Send Us Feedback

Disclosure Policy

The LSE editors ask authors submitting a post to the blog to confirm that they have no conflicts of interest as defined by the American Economic Association in its Disclosure Policy. If an author has sources of financial support or other interests that could be perceived as influencing the research presented in the post, we disclose that fact in a statement prepared by the author and appended to the author information at the end of the post. If the author has no such interests to disclose, no statement is provided. Note, however, that we do indicate in all cases if a data vendor or other party has a right to review a post.

Archives